**Theorem:Â **

**Every monotonic function on [a, b] is Riemann integrable.**

**Proof:**

\[ \therefore f(a)<f(x_1)<f(x_2)<f(b), a<x_1<x_2<b\]

Create an account

Welcome! Register for an account

A password will be e-mailed to you.

Password recovery

Recover your password

A password will be e-mailed to you.

- Advertisement -

Let â€‹\( f:[a, b]\to \mathbb{R} \)â€‹ be monotonic function.

If f is constant function then obviously it is Riemann integrable.

WLOG, suppose f is strictly increasing.

\[ \therefore f(a)<f(x_1)<f(x_2)<f(b), a<x_1<x_2<b\]

â€‹\( \therefore f(b)-f(a)>0 \)â€‹

Choose a partition of [a, b] for â€‹\( \epsilon>0 \)â€‹ such that,

â€‹\( P=\{a=x_0, x_1, x_2, … , x_n=b\} \)â€‹ with â€‹\( \|P\|<\frac{\epsilon}{f(b)-f(a)} \)â€‹

for â€‹\( [x_{k-1}, x_k], \|x_k-x_{k-1}\|<\frac{\epsilon}{f(b)-f(a)} \)â€‹

Consider,

U(f, P)-L(f, P)

â€‹\( =\displaystyle\sum_{k=1}^{n}(M_k-m_k)\Delta_{x_k} \)â€‹

â€‹\( =\displaystyle\sum_{k=1}^{n}[f(x_k)-f(x_{k-1})]\Delta_{x_k} \)â€‹

â€‹\( \leq\displaystyle\sum_{k=1}^{n}[f(x_k)-f(x_{k-1})]\|P\| \)â€‹

â€‹\( <\displaystyle\sum_{k=1}^{n}[f(x_k)-f(x_{k-1})]\frac{\epsilon}{f(b)-f(a)} \)â€‹

\( =\frac{\epsilon}{f(b)-f(a)}\displaystyle\sum_{k=1}^{n}[f(x_k)-f(x_{k-1})] \)

â€‹\( =\frac{\epsilon}{f(b)-f(a)}\times[f(b)-f(a)] \)â€‹

â€‹\( =\epsilon \)â€‹

â€‹\( \therefore U(f, P)-L(f, P)<\epsilon \)â€‹Â

â€‹\( \therefore \)â€‹Â by Riemann criterion,

f is Riemann integrable.

- Advertisement -

Insert math as

Additional settings

Formula color

Type math using LaTeX

Preview

\({}\)

Nothing to preview

Insert